Методы изготовления синтетических камней

Синтетические ювелирные камни

Синтетические ювелирные камни

Драгоценные камни издавна являлись предметом воспроизведения, однако только в конце XIX в. достижения химии и физики позволили создать синтетические драгоценные камни, не отличающиеся по своим свойствам от природных камней, а часто и превосходящие их. Археологическими исследованиями установлено, что в Древнем Египте (около 3 тыс. лет до н.э.) изготавливали цветные стекла, которые использовали как украшения и амулеты. Имитации драгоценных камней из стекла были широко распространены в Древнем Риме.

В ’’Естественной истории” Плиний Старший писал, что карбункулы (рубины) ’’подделываются из стекла так же, как и другие драгоценные камни, познаются они по пленкам внутри и по тяжести, а иногда по пузырькам, светящимся подобно серебру”. Он же описал трехслойный сардоникс, называемый триплетом. Этот материал подгонялся и склеивался из трех слоев — черного, белого и красного.

Позже стали применять дублеты, состоящие из двух различных камней — сверху драгоценный, а снизу менее дорогой: горный хрусталь или стекло и т.п. В 1758 г. австралийский химик Иозеф Штрасс разработал способ изготовления стеклянного сплава, чистого и бесцветного с относительно высоким показателем преломления. Сплав, состоящий из кремния, окиси железа, окиси алюминия, извести и сода, прекрасно гранился и шлифовался и после огранки напоминал бриллианты. Такой искусственный камень называется ’’стразом”.

Настоящий переворот в получении синтетических драгоценных камней был произведен французским химиком М.А. Вернейлем, который в 1892 г. разработал способ получения синтетического рубина. В промышленности этим методом стали пользоваться для выращивания синтетических рубинов, а затем и для синтеза других драгоценных камней — сапфира, шпинели, александритоподобного корунда и др. По мере развития и совершенствования техники выращивания монокристаллов были разработаны другие способы, которые позволяли получить ряд других синтетических камней — аналогов природного рутила, кварца, алмаза, изумруда и др. В последние годы созданы и новые виды кристаллов, аналогов которых нет в природе, — фабулит, иттрий-алюминиевый гранат, фианит и др.

Таким образом, в настоящее время существуют следующие виды синтетических ювелирных камней и их имитаций:

1)синтетические ювелирные камни, имеющие природные аналоги: корунды — рубин и сапфир, шпинель, рутил, алмаз, изумруд, кварц, александрит, опал,бирюза;

2)синтетические материалы, не имеющие природных аналогов: титанат стронция — фабулит, ниобат лития, иттрий-алюминиевый гранат, фианит и др.;

3)имитации ювелирных камней: стекла, дублеты и триплеты.

Синтетические ювелирные камни представляют собой искусственные кристаллы, полученные химическими или физическими методами, имеющие свойства, аналогичные природным камням тех же названий. Г.В. Банк пишет о том, что новые номенклатурные предписания специальной комиссии от 1970 г. установили более четкие определения синтетических камней: ’’Синтетические камни — суть окристаллизованные продукты, получение которых полностью или частично является делом рук человека. Их химический состав, кристаллическая структура и физические свойства в широком диапазоне совпадают с таковыми их природных прототипов (подлинных драгоценных и поделочных камней)”.

Основные методы выращивания

В настоящее время существует ряд способов изготовления синтетических камней.

Синтез драгоценных ювелирных и технических камней по способу М.А. Вернейля считается классическим и является первым промышленным методом выращивания кристаллов корунда, шпинели и других синтетических кристаллов. В мире ежегодно выпускается около 200 т синтетического корунда и шпинели.

Метод Вернейля заключается в следующем: к горелке с направленным вниз соплом через внешнюю трубу подводится водород, а через внутреннюю — кислород. В ток кислорода подается измельченный порошок окиси алюминия зернистостью около 20 мкм, полученный прокаливанием алюмоаммиачных квасцов, который при этом нагревается до определенной температуры и затем попадает в водороднокислородное пламя гремучего газа, где он расплавляется. Внизу под соплом располагается стержень из спеченного корунда, выполняющего роль кристаллоносца. На него стекает расплавленная окись алюминия, образуя шарик расплава. Стержень кристаллоносца постепенно опускается со скоростью 5—10 мм/ч, при этом обеспечивается постоянное нахождение расплавленной растущей части корунда в пламени.

На рисунке показана принципиальная схема установки для выращивания кристаллов этим методом. Диаметр образовавшиеся кристаллов (’’булек”) обычно достигает 20 мм, длина 50—80 мм, иногда их размер гораздо больше. Бульки представляют собой поликристаллы. Для получения монолитного монокристалла бульку оплавляют путем подачи кислорода. При этом на оплавленной поверхности бульки часть кристаллов остается неразрушенной и они при последующем охлаждении бульки начинают расти за счет оплавленных разрушенных кристаллов.

Для получения рубина к порошку окиси алюминия добавляют окись хрома, для синтеза сапфира — окись железа и титана, для синтеза александритоподобного корунда - соли ванадия. Этим же методом выращивают синтетический рутил и титанат стронция.

Второй распространенный метод выращивания синтетических кристаллов драгоценных камней - способ Чохральского. Он заключается в следующем: расплав вещества, из которого предполагается кристаллизовать камни, помещают в огнеупорный тигель из тугоплавкого металла (платины, родия, иридия, молибдена или вольфрама) и нагревают в высокочастотном индукторе. В расплав на вытяжном валу опускают затравку из материала будущего кристалла, и на ней наращивается синтетический материал до нужной толщины. Вал с затравкой постепенно вытягивают вверх со скоростью 1—50 мм/ч с одновременным выращиванием при частоте вращения 30-150 об/мин. Вращают вал, чтобы выровнять температуру расплава и обеспечить равномерное распределение примесей. Диаметр кристаллов до 50 мм, длина до 1 м. Методом Чохральского выращивают синтетический корунд, шпинель, гранаты, ниобат лития и другие искусственные камни.

Часто применяется метод кристаллизации из раствора в расплаве с использованием флюсов. При этом камни кристаллизуются из смешанного расплава, состоящего из раствора соединения и флюсов — молибдатов, боратов, фторидов, окиси свинца и др. Кристаллизуют вещества обычно в платиновом тигле при температуре от 600 до 1300°С (в зависимости от вида кристаллов). В расплав опускают затравку, а затем его охлаждают со скоростью 0,1 — 1 °С/ч. На затравке постепенно наращивается кристалл. Скорость роста невелика — за несколько недель кристалл вырастает на 3— 4 см. Этот метод по эффективности не может конкурировать со способом Чохральского и применяется в тех случаях, если кристалл плавится инконгруэнтно или испытывает деструктивное фазовое превращение в твердом состоянии.

Очень эффективен гидротермальный способ выращивания кристаллов драгоценных камней. Процесс осуществляется в автоклавах при давлении 7 • 107 — 14 • 107 Па и температуре 300—900 °С. Автоклав заполняют раствором соответствующего минерала. В нижней части автоклава температура более высокая; когда насыщенный раствор поднимается вверх и попадает в условия с пониженной температурой, вещество осаждается на затравку природного кристалла. Нижняя и верхняя части автоклава разделены диафрагмой.

Последние два метода применяют для выращивания синтетических изумрудов, бериллов. Гидротермальным методом синтезируют разновидности кварца и корунда, а методом флюса — иттрий-алюминиевые гранаты, корунды, шпинель.

Сверхтвердые синтетические минералы и материалы получают другими способами. Для выращивания алмаза необходимы давление 50 • 108 - 100 • 108 Па и температура более 1600 °С. Процесс синтеза алмазов осуществляется из графита в присутствии катализаторов-металлов. В зависимости от времени синтеза получают кристаллы алмазов различных размеров. Такими же методами синтезируют другие сверхтвердые материалы: гексанит, эльбор, СВ и др., которые широко применяются в технике. В ювелирном деле синтетические алмазы и сверхтвердые материалы до сих пор не применяются.